An Analogue of the Novikov Conjecture in Complex Algebraic Geometry

نویسنده

  • JONATHAN ROSENBERG
چکیده

We introduce an analogue of the Novikov Conjecture on higher signatures in the context of the algebraic geometry of (nonsingular) complex projective varieties. This conjecture asserts that certain “higher Todd genera” are birational invariants. This implies birational invariance of certain extra combinations of Chern classes (beyond just the classical Todd genus) in the case of varieties with large fundamental group (in the topological sense). We prove the conjecture under the assumption of the “strong Novikov Conjecture” for the fundamental group, which is known to be correct for many groups of geometric interest. We also show that, in a certain sense, our conjecture is best possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Todd Classes and Holomorphic Group Actions

This paper attempts to provide an analogue of the Novikov conjecture for algebraic (or Kähler) manifolds. Inter alia, we prove a conjecture of Rosenberg’s on the birational invariance of higher Todd genera. We argue that in the algebraic geometric setting the Novikov philosophy naturally includes non-birational mappings.

متن کامل

Large scale geometry, compactifications and the integral Novikov conjectures for arithmetic groups

The original Novikov conjecture concerns the (oriented) homotopy invariance of higher signatures of manifolds and is equivalent to the rational injectivity of the assembly map in surgery theory. The integral injectivity of the assembly map is important for other purposes and is called the integral Novikov conjecture. There are also assembly maps in other theories and hence related Novikov and i...

متن کامل

Real-oriented homotopy theory and an analogue of the Adams}Novikov spectral sequence

Using the Landweber}Araki theory of Real cobordism and Real-oriented spectra, we de"ne a Real analogue of the Adams}Novikov spectral sequence. This is a new spectral sequence with a potentially calculable E 2 -term. It has versions converging to either the Z/2-equivariant or the non-equivariant stable 2-stems. We also construct a Real analogue of the Miller}Novikov &algebraic' spectral sequence...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

An Algebraic Generalization of Image J

As is well known, the image of J-homomorphism in the stable homotopy groups of spheres is described in terms of the first line of Adams-Novikov E2-term. In this paper we consider an algebraic analogue of the image J using the spectrum T (m)(j) defined by Ravenel and determine the Adams-Novikov first line for small values of j.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008